CP-Logic Theory Inference with Contextual Variable Elimination and Comparison to BDD Based Inference Methods

نویسندگان

  • Wannes Meert
  • Jan Struyf
  • Hendrik Blockeel
چکیده

There is a growing interest in languages that combine probabilistic models with logic to represent complex domains involving uncertainty. Causal probabilistic logic (CP-logic), which has been designed to model causal processes, is such a probabilistic logic language. This paper investigates inference algorithms for CP-logic; these are crucial for developing learning algorithms. It proposes a new CP-logic inference method based on contextual variable elimination and compares this method to variable elimination and to methods based on binary decision diagrams.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Impact of Contextual Clue Selection on Inference

Linguistic information can be conveyed in the form of speech and written text, but it is the content of the message that is ultimately essential for higher-level processes in language comprehension, such as making inferences and associations between text information and knowledge about the world. Linguistically, inference is the shovel that allows receivers to dig meaning out from the text with...

متن کامل

Exploiting Contextual Independence In Probabilistic Inference

Bayesian belief networks have grown to prominence because they provide compact representations for many problems for which probabilistic inference is appropriate, and there are algorithms to exploit this compactness. The next step is to allow compact representations of the conditional probabilities of a variable given its parents. In this paper we present such a representation that exploits con...

متن کامل

Experimental Comparison of CP-Logic Theory Inference Methods

In many applications, the goal is to model the probability distribution of a set of random variables that are related by a causal process, that is, the variables interact through a sequence of nondeterministic or probabilistic events. Causal Probabilistic Logic (CP-logic) (Vennekens et al., 2006) is a probabilistic logic modeling language that can model such processes. The model takes the form ...

متن کامل

ANFIS modeling and validation of a variable speed wind turbine based on actual data

In this research paper, ANFIS modeling and validation of Vestas 660 kW wind turbine based on actual data obtained from Eoun-Ebn-Ali wind farm in Tabriz, Iran, and FAST is performed. The turbine modeling is performed by deriving the non-linear dynamic equations of different subsystems. Then, the model parameters are identified to match the actual response. ANFIS is an artificial intelligent tech...

متن کامل

Adaptive neuro-fuzzy inference system (ANFIS) applied for spectrophotometric determination of fluoxetine and sertraline in pharmaceutical formulations and biological fluid

The UV-spectrophotometric method of analysis was proposed for simultaneous determination of fluoxetine (FLX) and sertraline (SRT). Considering the strong spectral overlap between UV-Vis spectra of these compounds, a previous separation should be carried out in order to determine them by conventional spectrophotometric techniques. Here, full-spectrum multivariate calibrations adaptive neuro-fuzz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009